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Research
Questions

● RQ1: How will 
DACL perform with 
Curriculum 
Learning on 
In-Domain 
Datasets? 

● RQ2: How will 
DACL perform with 
Curriculum 
Learning on 
Out-of-Domain 
Datasets?

RQ1: DACL on In-Domain (Spotify)
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● We perform Disfluency Augmentations on 1,020 podcasts 
from the Spotify Podcasts Dataset [7]. 
○ Repeat and Interjection augmentations: Samples are 

drawn from X∼N (μ=10, σ=1) for finding the positions 
where we repeat the last word or inject interjections N 
times; interjections are randomly selected from: uh, um, 
well, like, so, okay, you know, I mean.

○ False start augmentations, sentences with at least 4 
words are sampled with 80% probability, and the first 2 
words of the selected sentences are injected N times.

● This dataset is in-domain for the Switchboard (SWB) [8] 
dataset, as both are transcribed spoken text. 
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● We consider T5-base [9] as our 
backbone model for the training 
stages.

● As we perform CL we see the scores 
gradually increasing. The R initially 
is low but gradually increases 
showing its ability to understand 
disfluencies better with each step. 
○ DACL-Best has the highest 

ROUGE scores and decent P, R, 
and F1 scores.

● In non-CL studies, the models 
exhibit low P but high R scores on 
the SWB test set. 
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● CL on Spotify outperforms WikiSplit [10] as 
the presence of inherent minimal speech 
disfluencies in the transcribed Spotify texts 
adds some noise to the training process 
making the model more capable in 
identifying disfluencies.

RQ2:  DACL on Out-of-Domain (WikiSplit)

● This skip-CL study shows the importance of the 
intermediate steps in the CL process. 

● Directly fine-tuning T5-base on SWB yields decent 
scores. However, the model returns empty strings 
in few cases.

● Fine-tuning DACL-Best on SWB yields a model that 
exhibits the highest P and shows decent R and F 
scores.

● Overfitting DACL-Best makes it identify more words 
and phrases as disfluencies at the cost of P.

We find that performing DACL on our in-domain dataset (Spotify) results in the best 
precision and favorable recall and F1 scores for the disfluency removal task.

Motivation
● Disfluencies are 

common in everyday 
speech [1].

● Data which does not 
contain disfluencies 
is beneficial for 
performance on 
downstream tasks 
for conversational 
systems, 
summarization, and 
machine translation 
systems [2,3,4,5,6].


